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A class of nonstationary flows for which the nonstationary analogy may be directly used 
for calculating the hypersonic flow past a blunt body at some distance from its blunted 
part is indicated. 

It is shown that the nonstationary analogy without the introduction in the flow field 
of entropy corrections,generally, necessitates a certain special distortion of the shock 

wave shape during the transition from a nonstationary to a stationary flow. 

The known solutions of equations of the nonstationary motion of gas, and the similarity 

of the stationary and nonstationary flows, established in p-31, are often used in calcu- 
lations of hypersonic flows around blunted slender bodies. The most frequently used are 

the solutions for strong explosions [4] and those for a piston moving according to the 
power law [S]. However, with the latter method of constructing solutions the entropy at 

the surface of the body corresponding to the piston is infinite, and in the neighborhood 

of this surface the solution looses its physical meaning. 

This shortcoming of the theory has been corrected in [S-lo] in which the inverse 

problem, i. e. that of finding a stationary flow corresponding to a shock, and obtained 
from the initial nonstationary solution by the nonstationary analogy (by the substitution 

1c = z&J) . The method of introducing the so-called entropy corrections to the shape 
of the body and to flow parameters derived directly from nonstationary analogy was 
proposed in those papers. It was shown in [9] that, in particular, in the case of a strong 

explosion such corrections reduce to a modification of only the shape of the body, whose 
surface must be assumed to follow the streamline corresponding to the trajectory of that 

particle of the nonstationary flow whose entropy equals that obtaining downstream of a 
normal shock. The complete class of flows having this property will be indicated in the 
following. The analysis of other flows in this formulation of the inverse problem is made 
much more difficult by the necessity of introducing corrections not only to the shape of 
the body but, also, to the flow field [lo]. With the aim of determining a certain class 
of stationary flows around blunt bodies, in this paper we propose a different method of 

construction (of solutions) which avoids these difficulties. The underlying idea of this 
method is to introduce corrections to the shape of the bow shock derived by nonstation- 
ary analogy, and not to the flow field. The shape of this shock is selected on the basis 
of the condition of complete congruence of the fields of stationary and nonstationary 
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solutions, while the shape of the body corresponds to the trajectory of a particle of the 

nonstationary flow whose entropy equals that obtaining behind the normal shock. With 

this construction there is no need for any corrections to the shape of the body or to the 
flow field. 

All of the above obviously relates to flow regions in which the theory of plane flow is 

applicable. 

Let us consider the possibility of using the nonstationary analogy for determining sta- 

tionary hypersonic flows of a perfect gas past plane or axisymmetric blunt bodies, and 
determine the conditions under which the parameters of a known nonstationary solution, 

recalculated by the use of nonstationary analogy, coincide with the parameters of a cer- 

tain stationary flow within the framework of the theory of plane flows. 

Let the shock waves r = R, (2) and r = R (2) correspond in a Cartesian (or 

cylindrical) coordinate system (Fig. 1) to a non- 
stationary and to the sought stationary flows, 
respectively. We introduce notation: p for pres- 

sure, p for density, u, for the velocity of the 
unperturbed flow, i for-time, and x for the adia- 

-~ ___ batic exponent. Using the substitution t = 

= x / kK, we transfer the nonstationary solution 

Fig. 1 to the rz-plane. Let us assume that the gas pres- 
sure in the unperturbed stream is negligibly 

small. The values S and S, of a certain entropy function, proportional to Q*/ p, behind 
a stationary and nonstationary shock, respectively, can then be written as 

Here C is a constant dependent on the adiabatic exponent . The entropy in the sta- 
tionary flow attains its maximum behind the normal shock, i.e. at S = S, = 6.~2. 

Let for X,’ = 1 and R, = rlr x = x1 in the initial flow S, = S, . Let us,also, 
assume that in this flow X,’ >I (or R,’ < 1) when x> x1, since the initial flow 
region corresponding to streamlines which had crossed the part of the shock wave of slope 
R,’ > ‘! cannot be used in the construction of stationary flow. Behind the shock the 

values R,’ > 1 are obviously possible for 2 ( x1, since in the following this part of 
the nonstationary solution is not used in the construction. 

Let us define the stream function ‘II, so that at the shock wave -+ = RV , where Y = 
= 1, 2 for the plane and axisymmetric cases, respectively. We construct the shock wave 

in the stationary flow so as to satisfy condition 

S (9,) = S, 64 + $1) NI = 5”) (2) 

Hence, in accordance with (1) 

x’s (r) + 1 = X*” I(7’ + r.P)l’vI (3) 

Hence the shock wave which satisfies condition (2) is defined by the quadrature 

x (r) = i f/X*‘* [(rv + rly)l/vl - 1 dr (4) 
b 

Let us denote the local angle of inclination of the shock wave fo the s-axis by z , 
and consider only such stationary flows in which R,’ decreases with x -+ 00 in such a 
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way that 
K (X) := R, (z) (1 + 0 V)), or X (r) --= X, (r) (1 +-- 0 (T”)) (5) 

It can be readily shown with the use of (4) that this condition is satisfied at least by 
power jumps R, =- .P for 2 / (2 + v) < ?I < 1. 

The theory of plane sections clearly implies that for sufficiently large I%, i. e. in the 

region of small Z, the field of a nonstationary solution defines for ‘II) > +I a certain 
stationary flow. (It can be shown by the substitution into equations of stationary flow 
the nonstationary solution that the former are satisfied to within zs@-l) x). We shall 
show that this stationary flow may be joined to the unperturbed stream via the shack(4). 

In a certain downstream region bounded by any characteristic A&‘, of the seconu 
family and the streamline q,,(Fig. 1). the solution is, in fact, completely defined by the 

shape of the wave R,(x) and by the entropy and total enthalpy distribution along A&‘,. 

In accordance with condition (2) for selecting the stationary shock and with estimate(:,) 
at J: -+ cx3 the indicated boundary conditions are the same for both the initial and the 

sought solutions within the accuracy of the theory of plane sections. 

It has thus been shown that a nonstationary solution of the kind defined above, wheq 
transferred to the plane of stationary solution by the simple substitution t = II: / us , 
defines within the limits of similarity for z + ‘u and II) > I& :I stationary flow around 
a blunt body. The shape of the body corresponds in this case to the trajectory of a par- 
ticle whose entropy equals that obtaining behind the normal shock, and the shape of the 

shock wave (for 0 < z < ‘DC) is defined by relationship (4). 
We stress once agam’tnat tne part of the initial solution for 0 < -Jo < $1 in which 

the entropy may exceed the entropy in the normal shock has no physical meaning, and 

is not used in the transition to stationary flow. 
It is interesting to note that in the case of a strong explosion (n = 2 / (2 + Y) by 

virtue of (4), ‘R (x) z R, (z) for any z. This explains the result obtained in [9] by 

means of constructing a stationary solution corresponding to wave R, - iW+v)_ 
kt us show that this is not an isolated case, and that there exist a whole class of shock 

waves satisfying the “conservation condition” X, (r) = X (r). In fact, in accordance 

with (3). this class of shocks must satisfy equation 

x’s (9 + 41) = X’2 (9,) + 1 (6) 

Since X’ (0) = 0, the values of X’at points IC = mql = mrlv are uniquely defined 
by the relationship (6) and are equal m (Fig.2). The shape of the shock between these 

_._.-_ Cl_ / 0 
_ii-,,<“” 

“reference points” depends on a rather arbitrary 

j ’ 

$I_-_ !__~_. .1.~__._..,~ Y. .i i 

selection of this shape along one of the segments 
I (m - 1) & < zl, < rn&, The straight line pas- 

“I 
/e 

( / 
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I 
sing through the reference points (the dotted line 
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in Fig. C?) relates to a strong explosion 

(n = 2 / (2 + Y)) 

, , ..m_;;_T$Lm+ -.I. _-.I 
For $--t L~ all shocks waves with the “conserva- 
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tion property” approach the shock wave which cor- 
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responds to a strong explosion. However, when 
z -+ 10, the solutions may vary considerably through- 

f ? .‘: 
out the flow field, since the entropy distribution at 

Fig. 2 small -$ is to a considerable extent determined by 
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the choice of the shape of the shock between the reference points. 
Let us consider in somewhat greater detail the shape of bodies which would obtain as 

the result of application of the above method of construction to thoroughly analyzed 

nonstationary flows behind a shock and expanding according to the power law H, - z’~. 

For x ---z m (2 / (2 + v) 6 n < 1) the particle trajectories in such flows and, consequent- 
ly the sought shape of the body satisfy the relationship 

Y- rw - cixvn + c,x 2(1-n)‘x (7) 

For n = 2 / (2 + Y) constant Cl = 0 (the case of strong explosion [8]). Hence the 
relative value of the correction to the shape of the body (corresponding to the trajectory 

of the particle with S, = 0) is 

!s!L_ 
K 

- 0 (z- P'~+ww-~9 [+__j , *+ = o(@x+1 ) iv =2, n =+I 

The relative dislocation of streamlines consequent to the error of the theory of plane 
profiles is Ar K = 0 

i 

.p + ,204ix *I 

J 

Hence correction Ar, exceeds that of the theory (Ar.) when 

(8) 

Outside this range of n the alteration of the body shape may be neglected. However 

the flow field in the proximity of the body ($* = $1) differs substantially from that in 
the neighborhood of 9, = U, owing to the exclusion from the flow of the region with 

entropy exceeding that obtaining behind the normal shock. It should be noted that 
according to p, 81 in investigations of stationary shock waves of the form R _ xn the 
shape of the body for x -+ CC coincides with that defined by Eq. (7). However, according 

to @.O], investigations of such flows had shown that coefficient C2 in (7) tends to 
infinity when l/ n - 1 + YX/(~X + 2) . In other words, when inequality (8) is not satis- 

fied, the shape of a body resulting in a stationary flow behind shock R,- 3” does not 
coincide with the particle trajectory in the corresponding nonstationary problem. 

As opposed to this, the proposed here method of constructing the solution for the shape 
of the body at 1 > n > 2 / (2 + Y) the latter is always determined by the particle tra- 

jectory in the nonstationary initial problem. The entropy of this particle is equal to the 
entropy obtaining behind the normal shock, and consequently the coefficient C, is always 
finite. 

We note in conclusion that the questions of existence of bodies defined throughout 
the whole range of 1 by shock waves chosen in the course of solving the problem remains 

open, as in the works cited above. 
The authors thank 0. C, Ryzhov and V. V. Sychev for discussing this work. 
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PARTICULAR STREAM SURFACES IN CONICAL GAS FLOWS 
PMM Vol. 34, Ng6, 1970, pp. 1058-1066 

A. I. GOLLJBINSKII 

(Receive(d”i$$w 3, 1 1970) 

Considering the field of conical flow of an ideal perfect gas near conical stream surfaces, 

we show that ordinary (regular) stream surfaces which are constant-entropy surfaces 
(isentropes) can coexist with particular stream surfaces characterized by distributed vari- 
able entropy. These particular surfaces are envelopes of the field-of-flow isentropes 
and can be contiguo~ with the regular stream surfaces without disrupting the continui~ 

of the stream surface either in the vicinity of the particular stream surface or in the 
vicinity where the two surfaces meet. The results obtained enable us to postulate a pat- 

tern of nonsymmettic flow past conical bodies with a continuous and unique distribution 
of gasdynamic parameters in the field of flow, and to infer that this pattern is free of 

singular points Cl]. 

1, Let us consider the flow of an ideal perfect gas conically symmetric with its cen- 
ter at the point 0 ; we assume that the field of flow contains a conical stream surface 
S on which the normal component of the flow velocity is equal to zero by definition. 

The stream surface S is represented by the curve s on the sphere of unit radius with its 

center at 0 (Fig, 1). We assume that in the curvilinear coordinate system 9, 5 the stream 
surface $I corresponds to q = 0 and the lines 5 = con.% correspond to the normals 
to I!?. In such coordinates the equations of gas motion are, for example p], of the form 

WU% + xvufi - x (ws + v”) = 0 

wvr + xvu, + xuv + yw= = - p-l xp fj (1.1) 
wwc + xvw, + x,,- Yvw = - p-1 pr, 

W& + vxp, + p (wi; + xv, + 2xu - Yv)= 0 
2x fx - 1)-’ p + p fu” + v2 + w2) = P~zrrKix 


